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In this paper the asymptotically sharp lower bound (4/n 2 )(In n -In In n) for the
norms of linear projections from C[ - L I] onto the polynomials of nth degree is
proved. As a consequence, we obtain the asymptotical minimality for some sequen­
ces of projections and particularly for the Chebyshev partial sum operators.
(' 1990 Academic Press, Inc

I. INTRODUCTION

When approximating continuous functions on the interval [- I, 1J,
polynomial projections are used frequently. Such projections, L n , are
bounded linear operators mapping C[ ~ I, 1J onto the subspace, JIn , of all
algebraic polynomials of degree less than or equal to n, and having the
property that L n [p J = p for all p E JIn .

The error of this approximation can be estimated using the Lesbesgue
inequality,

IILn[fJ ~ fL ,:;; (1 + IILnll)· £n [fJ,

where

IILnll= sup IILn[fJll"
II til, " I

is the norm of L n and £n [fJ denotes the error of the best approximation
of f by elements of JIn' The quality of a projection therefore depends on
its norm.

Since it seems to be a very hard problem to find minimal projections
Lr;;in, i.e., projections onto JIn with smallest possible norms (they are still
unknown unless n = 1), we at least would like to know projections whose
norms differ only a little from IILr;;mll. For this purpose, we need lower
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bounds which enable us to prove the asymptotical minimality for some
sequences (L")"E!\j' i.e., the property

Until now, for arbitrary n, only the inequality (cf. [2, p. 214; 4])

has been known, where A > 0 and 5" denotes the Chebyshev partial sum
operators (cf. [2]) with norms (see [8])

4
IIS"II = 0 In(2n + 1) + Y + p",

n~

0.012
where y=0.989431... and O~p,,~ )"' (2)

(2n + 1 ~

Although it has been regarded as an important question to diminish the
coefficient 4/n 2 of In n in the asymptotical evaluation for a sequence
( II L"II )n E!\j (cf. [4]) and therefore several projections with small norms
have been examined in the past (cf. [3, 4]), the upper bound 115,,11 for
IIL;;'inll could be improved [4] only by a constant summand as stated
above. We therefore might expect that 4/n 2 is the best possible coefficient.
Indeed, the inequality in the theorem below implies

. IIL;;'inll 4
hm --=0'

n ~ x In n n~

Hence, in Section 3, we obtain some sequences of asymptotically minimal
projections.

2. THE LOWER BOUND

First, we introduce the following notation:

:?J" := {L I L is a projection from C[ - 1, 1] onto IJ,,}

C'TO, n] := {f I f is a continuous, even, 2n-periodic function}

g-~:={cEc[o,n]lc(x)= f a"cosvx}
v=o

.Yf" := {H I H is a projection from C [0, n] onto .'1:;}.
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Furthermore, let T; and 5;; be the operators defined by

T, [fJ(x) := f(x +;.)

and

2 II I'Tr

5;;[f](x):=~ I'coskx'l f(t)cosktdt
n k U 'u

1 crr

=-1 f(t){D I1 (x+t)+DJ>;-t)}dt,
n 'u

where

D,,(u)=isin(n+~)u·csciu.

(L:' denotes that the first summand should be halved.)
Our main result is

THEOREM. For every n ~ 2, the norms 0/ projections L" E .~, are hounded
as follows:

4
IIL"II ~J (lnn-lnlnn).

n'
(3 )

The proof of the theorem will be a refinement of the well known proof
of the lower estimate in (1). We therefore use the following Lemmata
(cf. [2, p. 214; 5])

LEMMA 1. For every projection in .~, there exists one in -Yt;, having the
same norm and vice versa.

LEMMA 2. Let H he an arhitrary projection in .it;;, then

1 ,n

5;;+5;;=) I T;H(T;+T ;)dX
~n, IT

LEMMA 3. For every projection HE Y{f; and every b > 0, there exists a
projection in rtf; with finite carrier whose norm is hounded hy II HII + b.

Proof of the Theorem. The lower bounds are almost trivial for n ~ 44,
since they are less than I in these cases.

Now, let n > 44: Lemma 1 and 3 imply that the inequality (3) must be
proved for projections in /If;; with finite carrier. We therefore can assume
H[f] := L::~'~ I f(t,.) I" where t, E [0, n] and I,. E I;;.
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Let g be the even, 2n-periodic function defined on [0, n J by
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{

sgn D" G-t}
g(t) :=

0, otherwise;

with an arbitrary [E [0, n14], and let

g;:=(T;+T ,l[g].

One verifies readily that

S;;[gJ G) = ~ [ g(t) dt;; 0,

and so, since the norm of S" is (2In) g IDn(t)1 dt (cf. [2, p. 212J), we
obtain

(S~; + S;;)[gJ (~);;~ [;22 t,' g(t) {D" (~+ t) + Dn(~- t)} dt

2 ." 2 f" ( n)=;la IDn(tlldt+; og t+ 2 Dn(n+tldt

2 fIT 2 fIT [; I:;;- ID,,(tll dt-- IDn(t)1 dt-- sec-
non r. n 2

2 [ I:
= II S II - - R - - sec -

" n "n 2'

where

RI: = fIT!21 sin(2~ + 1)t[ dt.
el2 sm t

We define Ij;, := [12 + vnl(2n + 1) and choose f.1 such that Ij;" < n/2 :::.; Ij; I' + 1·

The cosecant function is monotonically decreasing in [0, n12J, so that

I' fljltt I

Rr.:::'; L csclj;,· Isin(2n+lltldt
,~o ljI,.

2 I'

=-2- I csc Ij;,
n + \ ,~o

2 B 2 fIT/2
:::';-2--\ csc -2 +- csc x dx

n + n 1:/2

2 [; 2 4
:::.;-- csc -+-In-.

2n+ 1 2 n B

64062'2-5
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(4)

Furthermore. the equation

: T;H(T;+ T JJ [g] G) = (T,H:[g;] G)
= {T; ,II g,(r,) I,}(fl

= £ ,!i;(t,) I, (~+;.)
\' J \.... /

gives rise to the inequality

(S:l +S;:) [g] (~) ~ 2'1[ ,I Jn;r IR; ( t , )I ·1 I, (~+ ;,) 1 (D,.

IgJt,l1 can only exceed I (i.e., be equal to 2), if t,+iE[(i-*)1[-D.
(i - ~) rr + I:] and t, - ;, E [( j - ~) rr - I:, (j - ~) rr + I:]; i, j E {O, I, 2 )
simultaneously, and hence if

;.E L:= [-rr, rr] n {, 11.\- ,~rrl ~I: for an integer I'}.

Since L has measure iii:.

(S :1 + S;; )[g] (~) ~ 2
1
rr rIT A (~+ ;,) (II. + LL,1 (~+ ),) d;.

~(I + ~:). HI!,

where /1 = I'," I 11.1 denotes the even, 2rr-periodic Lebesgue function of H,
(for which the well known relation II HI! = II A II, holds), It follows from the
given inequalities that

1 ( 4 4 4 D I: C)
liHl1 ~ I +4',/ IIS"II-~ In ~- (2 + I) esc )-- sec -2 .

1./ rr rr I. n rr _ 1[

Choosing I: := rr/( 4 In n), we obtain

In n (' 4 (16 )ilLJ ~ IIS"II-, In -Inn
1+ In n 1[- rr .

I rr 4 rr')'
- 4 In n sec 8 In n - (2n + I )rr esc 8 In II .

The theorem follows now using the inequality IIS"II ~ (4/rr 2
) In II + 1.27.

which is a simple consequence of (2). I
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Remark 1. Strictly speaking, the special choice of the discontinuous
function g in the proof of the theorem is not correct, but we can modify
g on a set of measure arbitrarily close to 0 without changing its norm, such
that the new function is continuous and takes the value 0 in the same inter­
vals as g. The upper estimate of S~; + S~; does not change, while the lower
bound is reduced by an arbitrarily small amount, so that the inequality (3)
still remains valid.

Remark 2. An elementary computation shows that, using another I: in
(4), the lower bound of the theorem can only be improved by a summand
of the order o(ln In fl).

3. ASYMPTOTICALLY MINIMAL PROJECTIONS

A simple consequence of the theorem and Eq. (2) is

COROLLARY 1. The Chehyshev partial sum operators are asymptotieally
minimal.

The purpose of linear polynomial projections is having a simple method
for approximating functions. However, the computation of S" requires the
knowledge of the values of n + I integrals, which cannot always be
assumed. Usually, we can use only function values, thus we need projec­
tions with finite carrier and in particular with a small carrier. A lower
bound for the number of required function values for projections is n + I,
which is taken by interpolation operators. Since it is impossible to find a
sequence of interpolation operators being asymptotically minimal (sharp
lower bounds for those operators are given in Vertesi [7]), we search for
asymptotically minimal projections with asymptotically finite carrier, i,e.,
the ratio of the number of required function values and n + I will tend to I.

Projections, having small carriers as well as small norms have been
defined by Lewanowicz [3] as follows:

where

II

S;;"I[f] = L'cx~"I[f] T k ;

k=O

2 111

CX lml [/'] =-- '\' /'( ) T ( )k, m + I L, Xi k X j ,
J~o

m ;;, fl,

2/+ I
Xj=cos ---J[

2m+2

and Tk denotes the kth Chebyshev polynomial, i.e., the S ::") are the
orthogonal polynomial expansions with respect to the inner product
(g,h)=[2/(m+I)JL:7'~og(xJh(xJAn important property of those
projections is

II Slml[/'J-/'11 <. I 11/'1 11 '1111
II, ,I "'2"(n+ I)! ,I
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(cf. [I]), where the right-hand side is also the best possible upper bound
for E" [fJ in the space e" I 1[_ L I].

Let now 'J. and fl be relatively prime numbers with 'J. > fi, and let
In := m" := 'J.n/fi + O( I). Then it has already been shown that

7[ 7[ 4
S ;;" III = - csc - .-, In n + O( I )

2'J. 2'J. 7[-

(cf. [6]). We therefore have

(5)

COROLLARY 2. There exi,\/.\ a sequence of LClwnO\ric:: opera/on S ;;"1
heing a.l'ymp/o/ically minimal and having a.l'ymp/otically minimal carrier.

Prooj: Let m", := [(2' + I )n/2']. According to (5), we can choose n,
such that

for n>I1,.

because 'J. = 2' + I and hence rr/(2cx) csc[rr/(2'J.)] < I + 2'. Defining

m := m" := Sn + 1
l!Jl n ,.\

if !l ~ n l ;

if n, < n ~ 11, + I.

the corollary follows readily. I

Remark 3. Amongst the other type of operators defined in [3] there is
also a sequence of asymptotically minimal projections with asymptotically
minimal carrier (cf. [6]).
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